308 research outputs found

    An almost symmetric Strang splitting scheme for the construction of high order composition methods

    Get PDF
    In this paper we consider splitting methods for nonlinear ordinary differential equations in which one of the (partial) flows that results from the splitting procedure can not be computed exactly. Instead, we insert a well-chosen state y⋆y_{\star} into the corresponding nonlinearity b(y)yb(y)y, which results in a linear term b(y⋆)yb(y_{\star})y whose exact flow can be determined efficiently. Therefore, in the spirit of splitting methods, it is still possible for the numerical simulation to satisfy certain properties of the exact flow. However, Strang splitting is no longer symmetric (even though it is still a second order method) and thus high order composition methods are not easily attainable. We will show that an iterated Strang splitting scheme can be constructed which yields a method that is symmetric up to a given order. This method can then be used to attain high order composition schemes. We will illustrate our theoretical results, up to order six, by conducting numerical experiments for a charged particle in an inhomogeneous electric field, a post-Newtonian computation in celestial mechanics, and a nonlinear population model and show that the methods constructed yield superior efficiency as compared to Strang splitting. For the first example we also perform a comparison with the standard fourth order Runge--Kutta methods and find significant gains in efficiency as well better conservation properties

    Exponential Integrators on Graphic Processing Units

    Full text link
    In this paper we revisit stencil methods on GPUs in the context of exponential integrators. We further discuss boundary conditions, in the same context, and show that simple boundary conditions (for example, homogeneous Dirichlet or homogeneous Neumann boundary conditions) do not affect the performance if implemented directly into the CUDA kernel. In addition, we show that stencil methods with position-dependent coefficients can be implemented efficiently as well. As an application, we discuss the implementation of exponential integrators for different classes of problems in a single and multi GPU setup (up to 4 GPUs). We further show that for stencil based methods such parallelization can be done very efficiently, while for some unstructured matrices the parallelization to multiple GPUs is severely limited by the throughput of the PCIe bus.Comment: To appear in: Proceedings of the 2013 International Conference on High Performance Computing Simulation (HPCS 2013), IEEE (2013

    On the error propagation of semi-Lagrange and Fourier methods for advection problems

    Get PDF
    In this paper we study the error propagation of numerical schemes for the advection equation in the case where high precision is desired. The numerical methods considered are based on the fast Fourier transform, polynomial interpolation (semi-Lagrangian methods using a Lagrange or spline interpolation), and a discontinuous Galerkin semi-Lagrangian approach (which is conservative and has to store more than a single value per cell). We demonstrate, by carrying out numerical experiments, that the worst case error estimates given in the literature provide a good explanation for the error propagation of the interpolation-based semi-Lagrangian methods. For the discontinuous Galerkin semi-Lagrangian method, however, we find that the characteristic property of semi-Lagrangian error estimates (namely the fact that the error increases proportionally to the number of time steps) is not observed. We provide an explanation for this behavior and conduct numerical simulations that corroborate the different qualitative features of the error in the two respective types of semi-Lagrangian methods. The method based on the fast Fourier transform is exact but, due to round-off errors, susceptible to a linear increase of the error in the number of time steps. We show how to modify the Cooley--Tukey algorithm in order to obtain an error growth that is proportional to the square root of the number of time steps. Finally, we show, for a simple model, that our conclusions hold true if the advection solver is used as part of a splitting scheme.Comment: submitted to Computers & Mathematics with Application

    Splitting methods for constrained diffusion-reaction systems

    Full text link
    We consider Lie and Strang splitting for the time integration of constrained partial differential equations with a nonlinear reaction term. Since such systems are known to be sensitive with respect to perturbations, the splitting procedure seems promising as we can treat the nonlinearity separately. This has some computational advantages, since we only have to solve a linear constrained system and a nonlinear ODE. However, Strang splitting suffers from order reduction which limits its efficiency. This is caused by the fact that the nonlinear subsystem produces inconsistent initial values for the constrained subsystem. The incorporation of an additional correction term resolves this problem without increasing the computational cost. Numerical examples including a coupled mechanical system illustrate the proven convergence results

    On the convergence of Lawson methods for semilinear stiff problems

    Get PDF
    Since their introduction in 1967, Lawson methods have achieved constant interest in the time discretization of evolution equations. The methods were originally devised for the numerical solution of stiff differential equations. Meanwhile, they constitute a well-established class of exponential integrators. The popularity of Lawson methods is in some contrast to the fact that they may have a bad convergence behaviour, since they do not satisfy any of the stiff order conditions. The aim of this paper is to explain this discrepancy. It is shown that non-stiff order conditions together with appropriate regularity assumptions imply high-order convergence of Lawson methods. Note, however, that the term regularity here includes the behaviour of the solution at the boundary. For instance, Lawson methods will behave well in the case of periodic boundary conditions, but they will show a dramatic order reduction for, e.g., Dirichlet boundary conditions. The precise regularity assumptions required for high-order convergence are worked out in this paper and related to the corresponding assumptions for splitting schemes. In contrast to previous work, the analysis is based on expansions of the exact and the numerical solution along the flow of the homogeneous problem. Numerical examples for the Schr\"odinger equation are included

    A strategy to suppress recurrence in grid-based Vlasov solvers

    Full text link
    In this paper we propose a strategy to suppress the recurrence effect present in grid-based Vlasov solvers. This method is formulated by introducing a cutoff frequency in Fourier space. Since this cutoff only has to be performed after a number of time steps, the scheme can be implemented efficiently and can relatively easily be incorporated into existing Vlasov solvers. Furthermore, the scheme proposed retains the advantage of grid-based methods in that high accuracy can be achieved. This is due to the fact that in contrast to the scheme proposed by Abbasi et al. no statistical noise is introduced into the simulation. We will illustrate the utility of the method proposed by performing a number of numerical simulations, including the plasma echo phenomenon, using a discontinuous Galerkin approximation in space and a Strang splitting based time integration
    • …
    corecore